The Irreducible Specht Modules in Characteristic 2

نویسنده

  • Andrew Mathas
چکیده

In the representation theory of nite groups it is useful to know which ordinary irreducible representations remain irreducible modulo a prime p. For the symmetric groups S n this amounts to determining which Specht modules are irreducible over a eld of characteristic p. Throughout this note we work in characteristic 2, and in this case we classify the irreducible Specht modules, thereby verifying the conjecture in 3, p. 97]. Recall that a partition is 2{regular if all of its non{zero parts are distinct; otherwise the partition is 2-singular. The irreducible Specht modules S with a 2{regular partition were classiied in 2]. Let 0 denote the partition conjugate to. If S is irreducible then S 0 is irreducible, since S 0 is isomorphic to the dual of S tensored with the sign representation. It turns out that if neither nor 0 is 2{regular then S is irreducible only if = (2; 2). In order to state our theorem, for an integer k, we let l(k) be the least non{negative integer such that k < 2 l(k) .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Submodules of Specht Modules for Weyl Groups

The construction of all irreducible modules of the symmetric groups over an arbitrary field which reduce to Specht modules in the case of fields of characteristic zero is given by G.D.James. Halıcıoğlu and Morris describe a possible extension of James’ work for Weyl groups in general, where Young tableaux are interpreted in terms of root systems. In this paper we show how to construct submodule...

متن کامل

Representations of symmetric groups

In this thesis we study the ordinary and the modular representation theory of the symmetric group. In particular we focus our work on different important open questions in the area. 1. Foulkes’ Conjecture In Chapter 2 we focus our attention on the long standing open problem known as Foulkes’ Conjecture. We use methods from character theory of symmetric groups to determine new information on the...

متن کامل

Irreducible Specht modules for Hecke algebras of type A

Let F be a field, n a non-negative integer, λ a partition of n and S λ the corresponding Specht module for the Iwahori–Hecke algebra HF,q(Sn). James and Mathas conjecture a necessary and sufficient condition on λ for S λ to be irreducible. We prove the sufficiency of this condition in the case where F has infinite characteristic and also in the case where q = 1.

متن کامل

Irreducible Specht Modules for Iwahori–hecke Algebras of Type B

We consider the problem of classifying irreducible Specht modules for the Iwahori–Hecke algebra of type B with parameters Q, q. We solve this problem completely in the case where q is not a root of unity, and in the case q = −1 we reduce the problem to the corresponding problem in type A.

متن کامل

A Q{analogue of the Jantzen{schaper Theorem

In this paper we prove an analogue of Jantzen's sum formula for the q{Weyl modules of the q{Schur algebra and, as a consequence, derive the analogue of Schaper's theorem for the q{Specht modules of the Hecke algebras of type A. We apply these results to classify the irreducible q-Weyl modules and the irreducible (e{regular) q{Specht modules, deened over any eld. In turn, this allows us to ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998